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Abstract
Epidemiologic studies suggest that diet rich in plant-
derived foods plays an important role in the prevention of
prostate cancer. Curcumin, the yellow pigment in the
spice turmeric, has been shown to exhibit chemopreven-
tive and growth inhibitory activities against multiple
tumor cell lines. We have shown previously that curcumin
and tumor necrosis factor–related apoptosis-inducing
ligand (TRAIL)/Apo2L interact to induce cytotoxicity in
the LNCaP prostate cancer cell line. In this study, we
investigated the mechanism by which curcumin augments
TRAIL-induced cytotoxicity in LNCaP cells. Subtoxic
concentrations of the curcumin-TRAIL combination in-
duced strong apoptotic response in LNCaP cells as
demonstrated by the binding of Annexin V-FITC and
cleavage of procaspase-3. Furthermore, LNCaP cells
express constitutively active nuclear factor-KB (NF-KB),
which is inhibited by curcumin. Because NF-KB has been
shown to mediate resistance to TRAIL-induced apoptosis
in tumor cells, we investigated whether there is a
relationship between NF-KB activation and resistance to
TRAIL in LNCaP prostate cancer cells. Pretreatment with
curcumin inhibited the activation of NF-KB and sensitized
LNCaP cells to TRAIL. A similar increase in the sensitivity
of LNCaP cells to TRAIL-induced apoptosis was observed
following inhibition of NF-KB by dominant negative mu-
tant IKBA, an inhibitor of NF-KB. Finally, curcumin was

found to inhibit NF-KB by blocking phosphorylation of
IKBA. We conclude that NF-KB mediates resistance of
LNCaP cells to TRAIL and that curcumin enhances
the sensitivity of these tumor cells to TRAIL by inhibiting
NF-KB activation by blocking phosphorylation of IKBA and
its degradation. [Mol Cancer Ther 2004;3(7):803–12]

Introduction
Prostate cancer is the second leading cause of cancer-
related deaths in the United States (1, 2). Androgen
reduction therapy is largely effective against hormone-
sensitive tumors, but hormone-refractory clones often
emerge after hormone therapy (3). Because apoptosis is
the underlying mechanism by which most anticancer
therapies including chemotherapy, radiation, and antihor-
monal therapy kill tumor cells, novel agents that may
sensitize drug-resistant tumor cells for induction of
apoptosis by conventional therapies could lead to the
regression and improved prognosis of the refractory
disease (4, 5). Indeed, chemotherapeutic agents have been
shown to sensitize tumor cells to killing by death ligands
such as tumor necrosis factor-a and Fas ligand (Apo1L or
CD95L; refs. 6, 7). However, the use of these apoptosis-
inducing antineoplastic agents is limited by unacceptable
systemic toxicity. Tumor necrosis factor–related apoptosis-
inducing ligand (TRAIL)/Apo2L, a recently discovered
member of the tumor necrosis factor superfamily, is a
potent inducer of apoptosis in various cancer cell lines
including prostate, colon, breast, skin, kidney, lung, brain,
and hematologic tumor cell lines, with little cytotoxicity to
the normal cells (8, 9). TRAIL is also effective in inhibiting
the tumor growth in vivo (10, 11), and unlike the severe
inflammatory response syndrome induced by tumor
necrosis factor- and the hepatotoxicity of Fas ligand
(12, 13), treatment of mice and nonhuman primates with
TRAIL is without systemic toxicity (14). Recently, however,
recombinant human TRAIL was shown to induce massive
apoptosis in normal human liver hepatocytes but not in
hepatocytes isolated from the livers of mice, rat, or
nonhuman primates (15). The hepatotoxicity of soluble
recombinant human TRAIL used in this study, as well as
its toxicity toward normal keratinocytes shown in another
report (16), was shown to result from the modifications
introduced to the TRAIL molecule to stabilize and enhance
trimerization of the three subunits of TRAIL. It is clear now
that only the polyhistidine tagged or leucine zipper motif
containing versions of recombinant human TRAIL with
low zinc contents are toxic to the normal cells (17, 18).
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Although the exact cause of prostate cancer is not known,
epidemiologic studies suggest that, in addition to race and
age, diet is a prominent risk factor for prostate cancer (19).
While a high-fat diet has been implicated in the occurrence
of human cancers, including prostate cancer, several
polyphenolic compounds found in common plant-derived
foods have been recognized for their anticarcinogenic
properties (20). Curcumin (diferuloyl-methane), the yellow
pigment found in the spice turmeric extracted from the
rhizome of the plant Curcuma longa , has been shown to
have strong anti-inflammatory, antioxidant, and anti–
lipooxygenase/cyclooxygenase activities (21, 22). Because
of its ability to scavenge free radicals and inhibit
inflammation, curcumin has been investigated for chemo-
prevention of cancers. Curcumin inhibited the induction of
cancers of skin, forestomach, duodenum, tongue, colon,
and mammary glands in models of chemical carcinogenesis
in mice and rats (23-25). Exposure of tumor cell lines to
curcumin in vitro inhibited cell proliferation and induced
apoptosis (26-30). It has also shown therapeutic efficacy
against human prostate cancer xenografts in nude mice
(31). Together, these studies demonstrate that curcumin
could potentially boost the antitumor activity of conven-
tional cancer therapies and immunologic agents such as
TRAIL. Indeed, we have reported previously that com-
bined treatment with curcumin and TRAIL induces strong
cytotoxic response in LNCaP cells characterized by the
activation of effector caspase-3 and caspase-9 and the
release of cytochrome c from mitochondria (32).

Nuclear factor-nB (NF-nB) regulates the transcription of
genes involved in immune and inflammatory responses (33)
and acts as a survival factor by protecting tumor cells from
apoptosis-inducing tumor necrosis factor-a TRAIL and
radiochemotherapy (34-38). Because curcumin has been
shown to inhibit NF-nB (29, 39), we hypothesized that
curcumin might sensitize prostate cancer cells to TRAIL by
inhibiting NF-nB. In this report, we show that there is a
strong correlation between the constitutively active NF-nB
and the resistance of LNCaP cells to induction of apoptosis
by TRAIL. Curcumin sensitized LNCaP cells to TRAIL-in-
duced apoptosis by inhibiting NF-nB activation by blocking
the phosphorylation of InBa, an inhibitor of NF-nB.

Materials andMethods
Reagents and Antibodies
Curcumin was purchased from Sigma Chemical Co.

(St. Louis, MO). Anti-cleaved caspase-3 (ASP175) and anti-
phospho-InBa (Ser32) antibodies were purchased from Cell
Signaling (Beverly, MA). Anti-NF-nB antibody was pur-
chased from Santa Cruz Biotechnology (Santa Cruz, CA).
TransAm NF-nB kit was from Active Motif (Carlsbad, CA).
Texas red–conjugated anti-rabbit IgG antibody was from
Vector Laboratories (Burlingame, CA). TRAIL and anti–
TRAIL receptor (TRAIL-R) antibodies were purchased
from R&D Systems (Minneapolis, MN). A 100 mmol/L
solution of curcumin was prepared in DMSO, and all test
concentrations were prepared by diluting the stock solution
in tissue culture medium.

Cell Lines
LNCaP cells (American Type Culture Collection, Rock-

ville, MD) were grown in RPMI 1640 (Invitrogen, Carlsbad,
CA) supplemented with 10% FCS (Hyclone, Logan, UT),
100 units/mL penicillin G, 100 Ag/mL streptomycin
sulfate, 1 Ag/mL hydrocortisone, and 100 nmol/L testos-
terone as described previously (40). Cells were cultured at
37jC in a humidified atmosphere consisting of 5% CO2

and 95% air and were maintained by subculturing cells
twice a week.

PZ-HPV-7 cells, a human prostatic epithelial cell line ob-
tained by transfecting normal prostatic epithelial cells with
human papilloma virus type 18 DNA (41), were obtained
from American Type Culture Collection and cultured in
keratinocyte serum-free medium supplemented with re-
combinant human epidermal growth factor (5 ng/mL) and
bovine pituitary extract (0.05 mg/mL). PZ-HPV-7 cells
show transformed morphology but are nontumorigenic in
nude mice.
MeasurementofCellViability[3-(4,5-Dimethylthiazol-

2-yl)-5-(3-Carboxymethoxyphenyl)-2-(4-Sulfophenyl)-
2H-Tetrazolium, InnerSaltAssay]

Cells (2 � 104) were seeded into each well of a 96-well
plate in 100 AL tissue culture medium. After 24-hour
incubation to allow cells to adhere, cells were treated with
either curcumin, TRAIL, or a combination of the two
agents. Cultures were incubated for an additional 48 hours.
Cell viability was determined by the colorimetric 3-(4,
5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay using
CellTiter 96 AQueous One Solution Proliferation Assay
System (Promega). This assay measures the bioreduction
by intracellular dehydrogenases of the tetrazolium com-
pound MTS in the presence of the electron coupling reagent
phenazine methosulfate. MTS and phenazine methosulfate
were added to the culture wells, and the mixture was
incubated for 3 hours at 37jC. Absorbance was measured
at 490 nm using a microplate reader and is directly pro-
portional to the number of viable cells in the cultures.
Percentage cytotoxicity was calculated from the loss of cell
viability in cultures.
Stainingwith AnnexinV-FITC
Induction of apoptosis was assessed by the binding of

Annexin V to phosphatidylserine, which is externalized to
the outer leaflet of the plasma membrane early during
induction of apoptosis. Briefly, LNCaP cells untreated or
treated with curcumin, TRAIL, or a combination of the two
agents for 48 hours were resuspended in the binding buffer
provided in the Annexin V-FITC Detection Kit II (BD Bio-
sciences Pharmingen, San Diego, CA). Cells were mixed with
2 AL Annexin V-FITC reagent and incubated for 30 minutes
at room temperature in the dark. Stained cells were analyzed
by fluorescent-activated cell sorting on a FACScan flow
cytometer (Becton Dickinson, Franklin Lakes, NJ).

Measurement ofTRAIL-R
To measure the expression of TRAIL-R, 106 LNCaP

cells were treated with curcumin (10 Amol/L) for 48 hours.

After incubation, cells were washed, blocked with Fc block
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(anti–CD16/CD32), and reacted with primary goat anti-

TRAIL-R1, anti-TRAIL-R2, anti-TRAIL-R3, or anti-TRAIL-

R4 antibodies (5 Ag/mL) for 45 minutes on ice. Cells were

washed once with PBS and incubated with phycoerythrin-

conjugated donkey anti-goat secondary antibody (1:50

dilution) for 45 minutes at 4jC. Cells were washed and

analyzed by flow cytometry.
Isolation of Nuclear Proteins
Nuclear extracts were prepared by the modified proce-

dure of Dignam et al. (42). Following treatment with
curcumin for 24 hours, LNCaP cells were washed three
times with PBS and incubated on ice for 15 minutes in hy-
potonic buffer A [10 mmol/L HEPES (pH 7.9), 10 mmol/L
KCl, 0.1 mmol/L EDTA, 0.1 mmol/L EGTA, 1 mmol/L
DTT, 0.5 mmol/L phenylmethylsulfonyl fluoride, and
0.6% NP40]. Cells were vortexed gently for lysis, and
nuclei were separated from the cytosol by centrifugation
at 12,000 � g for 1 minute. Nuclei were resuspended in
buffer C [20 mmol/L HEPES (pH 7.9), 25% glycerol,
0.4 mol/L NaCl, 1 mmol/L EDTA, 1 mmol/L EGTA,
1 mmol/L DTT, and 0.5 mmol/L phenylmethylsulfonyl
fluoride] and shaken for 30 minutes at 4jC. Nuclear ex-
tracts were obtained by centrifugation at 12,000 � g , and
protein concentration was measured by Bradford assay
(Bio-Rad, Richmond, CA). NF-nB in nuclear extracts was
detected by Western blotting as described below.
NF-KBBinding Activity
NF-nB (p65) binding activity in nuclear extracts was

measured using the ELISA-based TransAm NF-nB kit. In
this assay, NF-nB binds to the immobilized oligonucleotide
containing the NF-nB consensus sequence (5V-GGGA-
CTTTCC-3V), which is detected by sandwich ELISA. The
detection limit for TransAm NF-nB kit is <0.4 ng/mL
purified p65.
Western Blot Analysis
Total cellular proteins were isolated by detergent lysis

[1% Triton X-100 (v/v), 10 mmol/L Tris-HCl (pH 7.5),
5 mmol/L EDTA, 150 mmol/L NaCl, 10% glycerol,
2 mmol/L sodium vanadate, 5 Ag/mL leupeptin, 1 Ag/mL
aprotinin, 1 Ag/mL pepstatin, and 10 Ag/mL 4-2-amino-
ethyl-benzenesulfonyl fluoride] as described by Keane
et al. (43). Lysates were clarified by centrifugation at
14,000 � g for 10 minutes at 4jC, and protein concen-
trations were determined by Bradford assay. Samples
(50 Ag) were boiled in an equal volume of sample buf-
fer [20% glycerol, 4% SDS, 0.2% bromophenol blue, 125
mmol/L Tris-HCl (pH 7.5), and 640 mmol/L 2-mercaptoe-
thanol] and separated on 10% to 14% SDS-PAGE gels.
Proteins resolved on the gels were transferred to poly-
vinylidene difluoride membranes. Membranes were
blocked with 5% milk in 10 mmol/L Tris-HCl (pH 8.0)
and 150 mmol/L NaCl with 0.05% Tween 20 and probed

with protein specific antibodies to caspase-3, poly(ADP-

ribose) polymerase, NF-nB (p65), or phospho-InBa. Immu-

nocomplexes were visualized with enhanced chemilumi-

nescence detection system from Amersham (Arlington

Heights, IL).

Intracellular Localization of NF-KB
LNCaP cells cultured on cover slips for 24 hours

were treated with curcumin (50 Amol/L) for 4 hours.
After treatment, cells were washed twice and fixed with
cold 4% paraformaldehyde for 1 hour. After washing in
PBS, cells were blocked, permeabilized, and incubated
overnight at 4jC with rabbit anti-RelA (p65) antibody
(1:500 dilution). After incubation, cells were treated with
Texas red–conjugated anti-rabbit IgG in the dark at room
temperature for 2 hours. Cells were washed, mounted with
mounting medium containing 4V,6-diamidino-2-phenylin-
dole, and examined under fluorescent microscope.
DNATransfections
The transcriptional activity of constitutive nuclear NF-nB

was measured in NF-nB-dependent luciferase reporter gene
expression assay. Briefly, LNCaP cells were plated in six-
well plates for 24 hours and transiently transfected using
the LipofectAMINE reagent (Invitrogen) with p3nB-Luc
(2 Ag DNA) expression plasmid containing three HIV nB
sites upstream of the thymidine kinase minimal reporter
and the luciferase cDNA. Cells were incubated at 37jC
for 24 hours and lysed to prepare cell extracts. The
luciferase activity in cell extracts (50 AL) was measured in
a luminometer using reagents and instructions provided
with the luciferase assay system (Promega). In some
cultures, LNCaP cells were also transfected with pCMV-
InBa vector (2 Ag) expressing the dominant negative
mutant InBa (A32/36) from Clonetech (Palo Alto, CA).
The mutant InBa contains serine-to-alanine mutations at
residues 32 and 36, which confers resistant to phosphoryl-
ation and subsequent proteosome-mediated degradation
but still binds to NF-nB.
Statistical Analysis
Data are presented as means F SD. Interaction between

TRAIL and curcumin was tested by two-way ANOVA. The
degree of interaction was expressed as the percentage
difference between the combined TRAIL and curcumin
response and the sum of the responses to TRAIL and
curcumin alone.

Results
Combined Curcumin and TRAIL Treatment Induces

Cytotoxicity in Prostate Cancer Cells
The induction of cytotoxicity in LNCaP prostate cancer

cells by curcumin (10 and 25 Amol/L), TRAIL (20 ng/mL),
and combination of curcumin and TRAIL was calculated
from the loss of cell viability measured by the MTS assay.
As shown in Fig. 1A, treatment of LNCaP cells with
curcumin (10 or 25 Amol/L) or TRAIL alone induced little
cytotoxicity (f10%). In contrast, simultaneous exposure of
LNCaP cells to curcumin at both 10 and 25 Amol/L and
TRAIL resulted in significantly enhanced cytotoxicity (52%
and 77%, respectively). On the other hand, the viability of
PZ-HPV-7 human prostatic epithelial cells, which are
transformed but are not tumorigenic, was not affected at
these concentrations of curcumin or TRAIL when applied
separately or in combination (data not shown). Overall, the
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amount of cytotoxicity induced with combined curcumin
and TRAIL treatment was 320% and 489% higher for 10

and 25 Amol/L curcumin-TRAIL combinations than cyto-

toxicity that would be induced if the combined effect was

simply additive.
To determine whether apoptosis is the mode of cell

death induced by combination of curcumin and TRAIL,

LNCaP cells treated with curcumin, TRAIL, or curcumin-

TRAIL combination for 48 hours were examined by flow
cytometry for binding of Annexin V-FITC to phosphati-
dylserine, which is externalized to the outer surface of

the plasma membrane in cells undergoing apoptosis. As
shown in Fig. 1B, there was little binding of Annexin
V-FITC to untreated LNCaP cells or those treated with
curcumin alone (9% and 12%, respectively). The binding
of Annexin V-FITC was increased somewhat following
treatment of cells with TRAIL (21%). However, the
binding of Annexin V-FITC with combined treatment
with curcumin and TRAIL (58%) was 76% higher than
what would be expected if the effect was merely addi-
tive. The P value for the test for interaction was 0.003.

To further investigate induction of apoptosis, we
performed immunoblot analysis of whole cell lysate to
determine cleavage of procaspase-3. Untreated LNCaP
cells and those treated with curcumin (10 Amol/L) for
20 hours showed little or no cleaved fragments (19 and
17 kDa) of caspase-3 (Fig. 1C, lanes 1 and 2). The cleavage
of procaspase-3 was increased in cells treated with TRAIL
alone (20 ng/mL; lane 3). However, by far the most
processing of procaspase-3 was observed in cells treated
with curcumin-TRAIL combination (lane 4). Thus, en-
hanced binding of Annexin V-FITC and activation of
effector caspase-3 demonstrate induction of apoptosis in
cells treated with curcumin-TRAIL combination.
Effect of Curcumin on Expression of TRAIL-R on

LNCaPCells
Because TRAIL-induced apoptosis in LNCaP cells was

enhanced by curcumin, we considered the possibility that

curcumin might enhance apoptosis by TRAIL by modu-

lating the expression TRAIL-R. TRAIL transmits the

proapoptotic signal by interacting with death receptor 4

(DR4 or TRAIL-R1) and death receptor 5 (DR5 or TRAIL-

R2). Both TRAIL-R1 and TRAIL-R2 have cytoplasmic death

domains that can transduce death signals and activate

caspases and NF-nB (44). TRAIL also binds to decoy
receptors DcR1 (TRAIL-R3) and DcR2 (TRAIL-R4), which
have truncated death domains and are incapable of
transducing death signals (45). We examined LNCaP cells
for the expression of TRAIL-R and the effect curcumin has
on their expression by flow cytometry. Figure 2 shows that
LNCaP cells express all of the four TRAIL-R. The high-
affinity death signaling TRAIL-R2 is more abundantly
expressed than TRAIL-R1. In addition, both decoy recep-
tors (TRAIL-R3 and TRAIL-R4) are also heavily expressed
on LNCaP cells. Treatment with curcumin (10 Amol/L)
for 48 hours up-regulated the expression of TRAIL-R1
without altering the expression of TRAIL-R2. Curcumin

also increased the expression of TRAIL-R3 without

affecting TRAIL-R4 expression. These results indicate that

curcumin selectively increases the expression of TRAIL-R1

and TRAIL-R3 on LNCaP cells.
LNCaPCells Express NF-KB and Curcumin Inhibits It
We next investigated the possibility that constitutively

active NF-nB mediates the resistance of LNCaP cells to

Figure 1. A, curcumin sensitizes prostate cancer cells to TRAIL-induced
cytotoxicity. LNCaP cells (2 � 104) were treated with curcumin (10 or
25 Amol/L), TRAIL (20 ng/mL), or combination of curcumin and TRAIL for
48 hours. Cell viability was measured by the MTS assay using CellTiter 96
AQueous One Solution Proliferation Assay System. B, TRAIL-induced
binding of Annexin V-FITC to LNCaP cells. LNCaP cells were treated with
curcumin (10 Amol/L), TRAIL (20 ng/mL), or curcumin-TRAIL combination
for 48 hours. Cells were resuspended in 0.5 mL of binding buffer, reacted
with 2 AL Annexin V-FITC for 30 minutes at room temperature, and
analyzed for Annexin V-FITC binding by flow cytometry. C, combined
curcumin and TRAIL treatment activates caspase-3. Whole cell lysate
proteins (50 Ag per lane) isolated from untreated LNCaP cells or those
treated with TRAIL, or curcumin, or curcumin + TRAIL for 20 hours were
fractionated on 10% to 14% SDS-PAGE gels. Proteins were transferred
from the gel to nitrocellulose membrane and probed with antibodies
to cleaved caspase-3 or actin using enhanced chemiluminescence. Similar
results were obtained in three independent experiments. P < 0.044,
10 Amol/L curcumin+ 20 ng/mL TRAIL; P <0.018, 25 Amol/L curcumin +
20 ng/mL TRAIL.
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TRAIL, and potentiation of TRAIL killing of these cells
might involve inhibition of NF-nB activation by curcumin.
Immunoblot analysis of nuclear extracts prepared from
untreated and treated cells revealed the expression of
constitutive NF-nB, which was inhibited following treat-
ment with curcumin for 20 hours in a dose-dependent
manner (Fig. 3A). NF-nB was also suppressed in cells
treated with curcumin-TRAIL combination. On the other
hand, treatment with TRAIL alone had no effect on NF-nB
expression. Similar results were obtained in experiments
in which DNA binding activity of NF-nB to the nB
consensus sequence was measured. These measurements
also showed activated NF-nB in LNCaP cells, which is
inhibited by curcumin (Fig. 3B). These results were fur-
ther corroborated by immunocytochemical examination of
NF-nB in LNCaP cells. Control cells exhibited intense
nuclear localization of NF-nB as detected by treatment with
anti-RelA (p65) primary antibody followed by staining with
Texas red–conjugated secondary antibody (Fig. 3C). Cells
treated with curcumin (50 Amol/L) for 4 hours showed
diffused cytoplasmic expression of RelA. Taken together,
these results demonstrate that LNCaP cells express consti-
tutively active NF-nB, which is inhibited by curcumin.
Constitutive NF-KB in LNCaPCells IsTranscriptionally

Active
To examine whether constitutive NF-nB is transcription-

ally active, LNCaP cells were transiently transfected with
NF-nB regulated p3nB-Luc reporter construct to measure
NF-nB-dependent reporter gene expression. As shown in
Fig. 4, the relative luciferase activity of LNCaP cells
transfected with p3nB-Luc reporter vector was f75-fold
higher compared with cells transfected with the control
plasmid without nB sites. The luciferase activity was
suppressed when transfected cells were treated with
curcumin at 50 Amol/L. Luciferase activity was also
suppressed when cells were double transfected with

p3nB-Luc and dominant negative pCMV-InBaM (mutant)
vectors. The inhibition of NF-nB activity by curcumin or
pCMV-InBaM was further confirmed by immunoblotting
of nuclear NF-nB (top). These results indicate that consti-
tutive NF-nB in LNCaP cells is transcriptionally active.
Pretreatment with Curcumin Sensitizes LNCaP Cells

toTRAIL by Inhibiting NF-KB
To determine whether the mechanism by which curcu-

min sensitizes LNCaP cells to TRAIL-induced apoptosis
involves inhibition of NF-nB, we pretreated LNCaP cells
with curcumin at 25 Amol/L for 48 hours followed by
extensive washing. Cells were treated at 25 Amol/L
curcumin because, at this concentration, curcumin almost
completely blocks NF-nB expression (Fig. 3A). After
treatment with curcumin, cells were incubated with TRAIL
(20 ng/mL) for 48 hours to determine cytotoxicity. As

Figure 2. Effect of curcumin on TRAIL-R. Monolayers of LNCaP cells
were treated with curcumin (10 Amol/L) for 48 hours. Untreated (black
bars ) or treated (gray bars ) cells (1 � 106) were blocked with Fc block
(anti-CD16/CD32) and reacted with primary goat anti-TRAIL-R1, anti-
TRAIL-R2, anti-TRAIL-R3, or anti-TRAIL-R4 (5 Ag/mL each) for 45 minutes
on ice. Cells were washed and incubated with phycoerythrin-conjugated
donkey anti-goat secondary antibody for 45 minutes on ice. Cells
were analyzed for TRAIL-R expression on a FACScan flow cytometer.
*, P < 0.05, compared with control TRAIL-R1 and TRAIL-R2.

Figure 3. Constitutive NF-nB expression in LNCaP cells and its inhibition
by curcumin. Nuclear extracts were prepared from untreated LNCaP cells
(Control) or those treated with curcumin (12.5 to 50 Amol/L) for 20 hours
and analyzed for NF-nB by Western blotting (A) or colorimetrically (B) as
described in Materials and Methods. C, immunocytochemical detection of
NF-nB in LNCaP cells. Cells were treated with curcumin (50 Amol/L) for
4 hours and reacted with anti-RelA (p65) antibody followed by Texas red–
conjugated secondary antibody for immunocytochemical detection of
NF-nB. Similar results were obtained in three identical experiments.
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shown in Fig. 5A, pretreatment with curcumin for 48 hours
resulted in the suppression of NF-nB (day 0). Following
the removal of curcumin from cultures, NF-nB began to
recover and reached the pretreatment levels between days
6 and 10. The induction of sensitivity to TRAIL in pre-
treated cells was tightly associated with the level of NF-nB
(Fig. 5B). Induction of cytotoxicity in pretreated cells was
most pronounced on day 0 (58%), a time at which NF-nB
was maximally suppressed. The progressive decrease in
percentage cytotoxicity from days 2 to 10 corresponded
with the reappearance of nuclear NF-nB in treated cells.
Thus, these data demonstrate a clear correlation between
constitutive NF-nB and resistance/sensitivity to TRAIL.
Inhibition of NF-KB by Ectopic Expression of IKBA

Restores Susceptibility of LNCaPCells toTRAIL
Results shown in Fig. 5 demonstrated that the level of

NF-nB determines the resistance or susceptibility of LNCaP
cells to TRAIL. These data, however, do not provide direct
evidence that NF-nB mediates resistance of LNCaP cells to
TRAIL because, besides inhibiting NF-nB, curcumin may
also induce additional biochemical changes in cells that
could contribute to the sensitization of LNCaP cells to
TRAIL. To test this more directly, LNCaP cells were

transiently transfected with pCMV-InBaM dominant neg-

ative vector for targeted molecular ablation of NF-nB

and tested for suppression of NF-nB and susceptibility to

TRAIL. The expression of NF-nB was dramatically reduced

on day 2 after transfection and returned to the pretrans-

fection level by day 12 (Fig. 6A). Day 2 cells with highly

decreased level of NF-nB showed significantly enhanced

susceptibility to TRAIL in the absence of curcumin

(Fig. 6B). On the other hand, day 12 transfected cells

expressed NF-nB at a level comparable with that for control

cells and were resistant to TRAIL. However, these cells

remained susceptible to the combined curcumin-TRAIL

treatment. These results provide direct evidence that NF-nB

mediates resistance of LNCaP cells to TRAIL.
Curcumin Inhibits IKBAPhosphorylation
To determine whether inhibition of NF-nB by curcumin

is due to inhibition of the degradation of InBa, we mea-
sured the effect of curcumin on phosphorylation of InBa,
an essential event for its proteolytic degradation. As shown
in Fig. 7A, treatment of LNCaP cells with TRAIL in-
creased the phosphorylation of InBa (lane 2 versus lane 1).
Phosphorylation of InBa was partially to completely
inhibited by curcumin at 12.5 Amol/L (lane 2) after 4- and

Figure 4. Constitutive NF-nB is transcriptionally active in LNCaP cells.
LNCaP cells grown to 60% to 70% confluency were transfected with
control vector (pGL3-Luc ), p3xnB-Luc, or p3xnB-Luc and dominant
negative InBaM (InBa-mut ) expression vectors (2 Ag plasmid DNA) for
24 hours. Culture medium was replaced with fresh medium, and in some
wells, cells transfected with p3xnB-Luc vector were treated with curcumin
(50 Amol/L) for 20 hours. Cell lysates were prepared, and luciferase
activity was determined in a luminometer using the luciferase assay
system. Nuclear extracts prepared from p3xnB-Luc transfected LNCaP
cells treated with curcumin or transfected with InBa expression vector
were analyzed for NF-nB by Western blotting (top ). Similar results were
obtained in two separate experiments.

Figure 5. Curcumin inhibits NF-nB and augments induction of cytotox-
icity by TRAIL. LNCaP cells were treated with curcumin (25 Amol/L) for
20 hours. Cells were extensively washed in PBS to remove curcumin and
tested for expression of nuclear NF-nB and induction of cytotoxicity by
TRAIL. A, western blot analysis of nuclear NF-nB on days 0, 2 , 6, and 10
after removal of curcumin from the cultures. B, induction of cytotoxicity
by TRAIL (20 ng/mL) in cells pretreated with curcumin (hatched bars ) and
induction of cytotoxicity in untreated LNCaP cells by curcumin, TRAIL, or
curcumin-TRAIL combination (solid bars ). Identical results were obtained
in three separate experiments.
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20-hour treatment, respectively. At higher concentrations
(25 to 50 Amol/L), curcumin completely inhibited InBa
phosphorylation (lanes 4 and 5) after 4-hour treatment.
These data imply that curcumin inhibits constitutive NF-nB
by suppressing phosphorylation and degradation of InBa.

Discussion
Recent studies have shown that plant-derived dietary
compounds provide protection against the development
of cancers and other diseases (46, 47). We and others have
shown previously that food additive curcumin inhibits
proliferation and induces apoptosis in several tumor cell
lines (26-30). We have also demonstrated that curcumin
sensitizes hormone-sensitive LNCaP human prostate can-
cer cells to TRAIL-induced apoptosis by promoting
cleavage of procaspases and release of cytochrome c from
mitochondria (32). Here, we report that suppression of the
constitutively active NF-nB in LNCaP cells is a major event
by which curcumin chemosensitizes prostate cancer cells to

TRAIL-induced cytotoxicity. The blockade of NF-nB acti-
vation by curcumin involved repression of the phosphoryl-
ation of InBa, an event that primes InBa for proteasomal
degradation.

Hormone-sensitive LNCaP cells are only slightly sensi-
tive to TRAIL or curcumin alone. However, these two
agents together induced a strong apoptotic response
characterized by the binding of Annexin V and activation
of effector caspase-3. Other investigators have shown
DNA-damaging chemotherapeutics doxorubicin, etopo-
side, and CPT-11 to potentiate apoptosis by TRAIL in a
variety of tumor cell lines (48-52). Because administration
of these agents is limited by systemic toxicity, curcumin,
which is a pharmacologically safe agent, provides an
alternative approach to sensitize tumor cells to TRAIL
without toxicity.

Curcumin may enhance the sensitivity of tumor cells to
TRAIL by modulating the expression of TRAIL-R on tumor
cells. Fluorescent-activated cell sorting analysis revealed
that LNCaP cells express death signal-inducing TRAIL-R1
(DR4) and TRAIL-R2 (DR5) as well as decoy receptors
TRAIL-R3 (DcR1) and TRAIL-R4 (DcR2). Curcumin
increased the expression of TRAIL-R1 but not of TRAIL-
R2. It also increased the expression of TRAIL-3 without
altering TRAIL-R4 expression. It is unclear whether
increase in TRAIL-R1 by curcumin accounts for increased

Figure 6. Expression of dominant negative InBa inhibits NF-nB and
increases susceptibility to TRAIL. LNCaP cells were transfected with
dominant negative pCMV-InBa vector expressing mutant InBa (A32/36).
Transfected cells were harvested to measure NF-nB and sensitivity to
TRAIL. A, western blot analysis of NF-nB in control and transfected cells
(days 2 and 12). B, cytotoxic response of days 2, 6, and 12 transfected
cells to TRAIL (20 ng/mL) or day 12 cells to curcumin-TRAIL combination
(cur/TRAIL; hatched bars ) and cytotoxic response of control LNCaP cells
to TRAIL, curcumin, or combined curcumin-TRAIL (solid bars ). Similar
results were obtained in three independent experiments.

Figure 7. Curcumin inhibits phosphorylation of InBa. A, LNCaP cells
were treated with TRAIL (20 ng/mL) or combined TRAIL-curcumin (12.5,
25, and 50 Amol/L) simultaneously for 4 or 20 hours. Cell lysates were
prepared and analyzed by Western blotting to determine phosphorylated
InBa using antibodies against phosphorylated InBa. B, histogram showing
the relative levels of phospho-InBa. Identical results were obtained in two
separate experiments.
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sensitivity to TRAIL because inhibitory TRAIL-R3 was also
increased by curcumin. It should be noted, however, that
TRAIL-R data presented are the percentage of cells
expressing each receptor, not the total receptor abundance.
Therefore, the possibility remains that curcumin sensitizes
LNCaP cells to TRAIL by altering the balance of death and
decoy TRAIL-R in favor of death-inducing TRAIL-R1 and
TRAIL-R2. NF-nB not only plays a critical role in the
transcription of genes involved in immune and inflamma-
tory responses (33), cell proliferation/differentiation (53),
or cell transformation (54) but also acts as a survival factor
by protecting tumor cells by inhibiting apoptosis (34-37).
Because NF-nB protects tumor cells from apoptosis, we
considered the possibility that resistance of prostate cancer
cells to TRAIL might also be due to increased NF-nB
activity. LNCaP cells were found to express transcription-
ally active NF-nB. Treatment with curcumin inhibited NF-
nB in a dose-dependent fashion. Others have also shown
curcumin to suppress constitutive and inducible NF-nB
activity in several cell types (54-56). Because activated NF-
nB induces proliferation in tumor cells and therefore
curtails apoptosis, this might explain why LNCaP cells
are resistant to TRAIL.

Our results also demonstrate that constitutively active
NF-nB in LNCaP cells is not merely an epiphenomenon
irrelevant to the resistance of these cells to TRAIL, because
suppression of NF-nB through pretreatment with curcumin
or transfection with superrepressor InBa (A32/36) sensi-
tized LNCaP cells to TRAIL. This result agrees with pre-
vious studies showing that constitutive NF-nB renders
tumor cells resistant to TRAIL (54, 57, 58), and its inhibition
with various agents leads to the sensitization of tumor
cells to TRAIL-induced apoptosis (59-61).

The mechanism by which curcumin inhibits NF-nB is
unclear. In resting cells, NF-nB remains sequestered in the
cytoplasm in a functionally inactive form noncovalently
bound to an inhibitory protein, InBa (62). On stimulation
of cells with mitogens, antigens, or cytokines, InBa is
phosphorylated and degraded allowing NF-nB to translo-
cate to the nucleus where it binds to the nB motifs in the
promoter region of the responsive genes. Our result
demonstrating the inhibition of phosphorylation of InBa
indicates that curcumin inhibits NF-nB signaling by
preventing InBa phosphorylation and its degradation.
These results are consistent with previous reports in which
curcumin was shown to inhibit phosphorylation of InBa
(54, 63). Whether curcumin inhibits InBa phosphorylation
in LNCaP cells by blocking IKK activity, the kinase that
phosphorylates InBa remains to be determined.

It is also not entirely clear how suppression of NF-nB by
curcumin promotes apoptosis, but it may be related to the
effect of curcumin on NF-nB target genes that regulate
apoptosis. Curcumin down-regulates the expression of
NF-nB-dependent antiapoptotic Bcl-2 and Bcl-xL in pros-
tate cancer cell lines (29). The inhibition of NF-nB by
curcumin may also attenuate members of the inhibitor of
apoptosis proteins family, which are regulated by NF-nB
(64, 65). Besides NF-nB, other molecular targets of cur-

cumin such as cell survival signal protein kinase B/Akt,
c-Jun NH2-terminal kinase, and peroxisome proliferator-
activated receptor g (66-68) may also contribute to the
chemosensitization of prostate cancer cells to TRAIL.

In conclusion, present studies demonstrate that consti-
tutively active NF-nB mediates resistance of prostate cancer
cells to TRAIL, and the mechanism by which curcumin
sensitizes them to TRAIL involves suppression of NF-nB
activation through inhibition of InBa phosphorylation and
its degradation. Although the finding that a relatively
nontoxic agent such as curcumin can restore the respon-
siveness of LNCaP cells to TRAIL is promising, additional
prostate cancer cell lines will have to be tested before the
combined curcumin-TRAIL treatment regimen could be
considered for clinical application. It is also unclear
whether the effective (sensitizing) concentration of curcu-
min can be achieved in vivo because of the poor
bioavailability of orally administered curcumin (69). This
difficulty may be surmounted, however, by coformulation
with piperine, which has been shown to inhibit hepatic
and intestinal glucuronidation and increase the bioavail-
ability of curcumin (70).
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